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Where I come from?

▶ LTG: Language Technology Group
▶ Section for Machine Learning,

Department of Informatics, University of Oslo
▶ Run our own study programs (BSc + MSc)
▶ ∼4 permanent, 2 adjuncts, 3 postdocs,

2 researchers, 8 PhDs
▶ Natural Language Processing (NLP):
▶ also known as ‘computational linguistics’

▶ ...and of course we train and evaluate large language
models (for English and Norwegian)

https://www.mn.uio.no/ifi/english/research/groups/ltg/
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What are language models?

(ChatGPT, a generative language model by OpenAI)
https://chatgpt.com/

(PaLM 2, a generative language model announced by Google in May 2023)
https://ai.google/discover/palm2/

Are these ‘language models’ artificial intelligence (AI)? And what do they actually ‘model‘?
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What are language models?

Roughly speaking, language modeling is
...predicting the next word in the text given the previous words

For example
▶ ‘What is the meaning of <PREDICT>’....
▶ hmm... ‘life’?
▶ Yes! ‘What is the meaning of life’.
▶ ‘She is a researcher in natural language <PREDICT>’....
▶ hmm... ‘processing’?
▶ No! ‘She is a researcher in natural language understanding’.

▶ Idea dates back to [Shannon, 1948]

▶ actively used since the 1980s for Machine Translation and Automated Speech Recognition
▶ ∼10 years ago, with neural LMs, became central in NLP and more.
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What are language models?

Language modelling as two tasks
▶ Task 1: to estimate probabilities of natural language sequences:

▶ ‘What is the probability of lazy dog?’
▶ ‘What is the probability of The quick brown fox jumps over the lazy dog?’
▶ ‘What is the probability of green colorless ideas sleep furiously?’

▶ Task 2: to estimate the probability of a word x to follow a word sequence S of length n:
▶ ‘What is the probability of seeing jumps after The quick brown fox?’

▶ These two are closely related, almost the same task:

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2)P(w4|w1:3)...P(wn|w1:n−1) (1)

▶ Any system able to yield P(x) given S is a language model (LM).

Computational language models are data-driven: they are trained to learn the probabilities
from large natural text collections.
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Evaluation of language models

‘She is a researcher in natural language...

snow-boarding’?!
I am perplexed!

▶ One can evaluate and compare LMs by their perplexity:
▶ how perplexed/surprised is the model by test word sequences
▶ the lower the better.

▶ For each of i words in the test corpus, find how probable it is according to the LM:

ENTROPYi = − log2 LM (wi |w1:i−1)
PERPLEXITYi = 2ENTROPYi

(2)

▶ exponentiated negative log-likelihoods per token
▶ For corpus perplexity, you simply average token perplexities.
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What are language models?

Any language model is a text generator by definition

Autoregressive or causal generation:
▶ feed a word or a sentence (prompt) into the LM
▶ get a probability distribution over what words are likely to come next
▶ pick the most probable word from this distribution (or use some form of sampling)
▶ feed it right back in the LM together with the previous words
▶ repeat this process and you’re generating text!

Slightly rephrasing https://karpathy.github.io/2015/05/21/rnn-effectiveness/

This is what ChatGPT or GPT-4 do. Thus, generative language models.
Generating word sequences to pretend as best as they can that these sequences are generated
by humans: ‘Imitation Game’.
Decide for yourself whether this counts as ‘AI’.
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What created modern ‘Generative AI’ hype?
Modern language models are built with multi-layered artificial neural networks
▶ First neural LM in [Bengio et al., 2003] used feed-forward neural network architecture

▶ produced word representations (embeddings) as a by-product in its hidden layers.
(image from Jurafsky and Martin, 2023)

But things have moved forward since then. In what ways?
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1. Increased compute

▶ Hardware capabilities are growing: graphic processing units (GPUs) and Tensor Processing
Units (TPUs). They excel in parallelized matrix multiplication.

▶ Compute divide: who can afford burning 100K GPU/hours to train a GPT-10B model for a
mid-sized language?
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2. Increased data

LMs are trained on raw texts: lots of data to crawl from the Internet (most of it in English).
Training corpora sizes for some famous LMs in running words:

▶ Formal linguistic skills of language models improve a lot when the size of the training data
increases

▶ ...unlike functional communicative competence (social reasoning, pragmatics, etc), which
often require special modules.
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3. Better architectures: transformers

Transformer
▶ A sequence of feedforward layers
▶ multi-headed self-attention
▶ positional encoding
Transformers allowed to use the existing data and
compute in the most optimal way.

(image from Jurafsky and Martin, 2023)
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Language models similar to human brain?

Predictive language processing in humans
▶ ‘Models that perform better at predicting

the next word in a sequence also better
predict brain measurements’

▶ ‘predictive processing fundamentally shapes
the language comprehension mechanisms in
the brain’

[Schrimpf et al., 2021]

Human language system and computational LMs are both optimized to predict upcoming
words for efficient meaning extraction?
Might be!
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Language models similar to human brain?
Interestingly, it is specifically next word prediction performance that correlates with human
language processing activities (not other NLP tasks):

[Schrimpf et al., 2021]
13



Language models similar to human brain?

Tool to study human language processing?
▶ Neural LMs are much better correlated with brain data than the previous-generation LMs.
▶ They are not exactly models of brain, but their architectures capture important properties

of language processing in humans.

‘It seems that language modeling encourages a neural network to build a joint probability
model of the linguistic signal, which implicitly requires sensitivity to diverse kinds of regularities
in the signal’

[Schrimpf et al., 2021]

NB: LLMs are much worse with functional tasks (e.g. related to theory of mind)!
[Mahowald et al., 2024]
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Modern large language models

https://github.com/Mooler0410/LLMsPracticalGuide 15
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Modern large language models

There are three major types of modern LMs aimed at producing different outputs:
encoder-only, decoder-only and encoder-decoder.

16



Architectures

1. Encoder language models
▶ Trained to produce useful representations of input words / sequences (encode them)
▶ also known as masked language models
▶ popular example: BERT [Devlin et al., 2019]

▶ not used much for generation, but excel in classification, etc

17



Architectures

2. Decoder language models
▶ Trained to predict the next word based on the

previous words
▶ decoding the current model state into human

language words
▶ also known as autoregressive or causal models
▶ excel in text generation
▶ most classical type of language models, dating back

70 years
▶ popular examples: GPT-3 [Brown et al., 2020], ChatGPT,

GPT-4, Mistral [Jiang et al., 2023] and what not.
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Architectures

3. Encoder-decoder language models
▶ trained on both encoding and decoding objectives
▶ also known as text-to-text models
▶ any task is cast as converting one text to another
▶ encoding the input text and then decoding the output text
▶ most popular example: T5 [Raffel et al., 2020]

19



Instruction fine-tuning and alignment

Helpful instructions
▶ One can further fine-tune a generative language model on a collection of specific datasets

phrased as instructions (check out open FLAN-T5 family of models [Chung et al., 2022])
▶ sort of an extension of the text-to-text idea
▶ shown to generalize on unseen tasks
▶ of course, manually annotated datasets are required.
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Human-in-the-loop

Important addition: large-scale human supervision (a.k.a. RLHF).

▶ InstructGPT model [Ouyang et al., 2022]

▶ pre-trained LM is additionally refined on human
preferences: reinforcement learning with human
feedback (RLHF)

▶ human supervision on hundreds of thousands of
interactions (crowd-workers paid 2$/hour max)

▶ pushes the models towards being helpful, harmless,
and honest in chat

▶ often called ‘alignment’: this very case when an
external signal is required, beyond pure language
modeling [Rafailov et al., 2023]

Some even suggest to call such LMs ‘instruction-tuned text generators’ [Liesenfeld et al., 2023]
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Instruction fine-tuning and alignment

[Kocoń et al., 2023]
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LLMs are doing well

▶ ChatGPT is not very novel scientifically, but it is a gem of engineering and marketing.
▶ ChatGPT/GPT-4 are not the superior LMs; they did not destroy NLP
▶ Large generative LMs are not bad in linguistic tasks, but what does it bring us to?
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Can LLMs have intentions or agency?

▶ A modern take on the Turing test:
▶ perceived intelligence (or agency) lies in the eye of

the beholder:
▶ claims of intelligence/agency are meaningful only

when their evaluator is taken into account
[Murty et al., 2023]

Still, the answer of my beholder is clear ‘no’. Here’s why.
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Intelligent octopuses and Chinese rooms

▶ Language skills , intelligence or agency [Bender and Koller, 2020]

▶ Humans do use language as a substrate for knowledge [Mahowald et al., 2024]...
▶ that’s why some functional skills can be learned from texts
▶ even passing some form of the Turing test...

▶ ...even if all of this is done by a 100% automaton.
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Can LLMs have intentions or agency?

What is this?

Float pool, also known as sensory deprivation tank or isolation tank.
Image source: Wikipedia
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Can LLMs have intentions or agency?

Lack of permanent awareness/processing
▶ LLM frameworks are executable computer code by design
▶ they only respond to stimuli (prompts)
▶ when no prompt is given, LLM ‘is not running’:

▶ no ‘contemplation’ or ‘thinking over’ or ‘making decisions’
▶ as any computer program, they stop when they reach the end of the code/function.

Unlike us humans!
▶ Default state network in the brain ‘integrates meaning

over long period of time’ [Buckner and DiNicola, 2019]
▶ Humans ‘contemplate’ even without any external

stimuli
▶ e.g., in a sensory deprivation tank

▶ humans are always ‘online’
▶ I believe this is a sine qua non for agency.
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Can LLMs have intentions or agency?

No substance for agency
▶ LLMs are sets of numerical weights in a

large multi-nomial classifier
▶ basically, a bunch of matrices (tables) with

float numbers
▶ ...and a few rules on converting natural

language words into vectors and multiplying
them by the matrices

▶ What exactly can be an agent here?
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Can LLMs have intentions or agency?

‘Digital’ means ‘easy to copy’
▶ Technically, any number of absolutely

identical copies of any LLM can be created
any time.

▶ Will they all have the same ‘intentions’?
▶ Will they all be one and the same ‘agent’?
▶ Looks very ill-defined to me.

Widespread ‘anthropomorphisation’ of LLMs can be partially caused by the influence of
commercial closed-source models: one cannot download or copy them.
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Questions and answers

Agency? Intentions?
▶ Language models (LMs) estimate probabilities of linguistic sequences...
▶ ...but in addition, they can be used directly for text generation (chat-bots).
▶ Generative LMs are becoming a significant part of our lives

▶ Modern large LMs based on deep artificial neural networks are much better than LMs of the
past in capturing linguistic structure (at least for English).

▶ But they are not anything like ‘agents’, and they can’t have ‘intentions’.
▶ They are ‘libraries, not librarians’, despite the opinion in [Lederman and Mahowald, 2024]:

▶ for many reasons, including the inherent lack of default state system.
▶ LLMs are only machines trained to reproduce the probability distribution for the next words

given the previous lexical context.
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